Properties

Base field \(\Q(\sqrt{-2}) \)
Label 2.0.8.1-20898.5-a1
Conductor \((9 a + 144)\)
Conductor norm \( 20898 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 + 2)
gp (2.8): K = nfinit(a^2 + 2);

Weierstrass equation

\( y^2 + x y = x^{3} - x^{2} + \left(111 a - 30\right) x + 454 a + 384 \)
magma: E := ChangeRing(EllipticCurve([1, -1, 0, 111*a - 30, 454*a + 384]),K);
sage: E = EllipticCurve(K, [1, -1, 0, 111*a - 30, 454*a + 384])
gp (2.8): E = ellinit([1, -1, 0, 111*a - 30, 454*a + 384],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((9 a + 144)\) = \( \left(a\right) \cdot \left(-a - 1\right)^{3} \cdot \left(a - 1\right)^{2} \cdot \left(-3 a - 5\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 20898 \) = \( 2 \cdot 3^{5} \cdot 43 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((-1062882 a - 1771470)\) = \( \left(a\right)^{2} \cdot \left(-a - 1\right)^{11} \cdot \left(a - 1\right)^{11} \cdot \left(-3 a - 5\right) \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 5397542252748 \) = \( 2^{2} \cdot 3^{22} \cdot 43 \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{2847693229}{20898} a - \frac{541607365}{20898} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil rank and generators

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a\right) \) 2 \(2\) \( I_{2} \) Non-split multiplicative 1 2 2
\( \left(-a - 1\right) \) 3 \(1\) \( II^* \) Additive 3 11 0
\( \left(a - 1\right) \) 3 \(4\) \( I_{5}^* \) Additive 2 11 5
\( \left(-3 a - 5\right) \) 43 \(1\) \( I_{1} \) Split multiplicative 1 1 1

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 20898.5-a consists of this curve only.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.