Properties

Base field \(\Q(\sqrt{-7}) \)
Label 2.0.7.1-1600.4-a
Conductor 1600.4
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

Elliptic curves in class 1600.4-a over \(\Q(\sqrt{-7}) \)

Isogeny class 1600.4-a contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
1600.4-a1 \( \bigl[0\) , \( 0\) , \( 0\) , \( 13\) , \( -34\bigr] \)
1600.4-a2 \( \bigl[0\) , \( 0\) , \( 0\) , \( -7\) , \( -6\bigr] \)
1600.4-a3 \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \)
1600.4-a4 \( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( -426\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph