Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-392.1-b
Conductor 392.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 392.1-b over \(\Q(\sqrt{-1}) \)

Isogeny class 392.1-b contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
392.1-b1 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i - 1\) , \( -i\bigr] \)
392.1-b2 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 14\) , \( 24 i\bigr] \)
392.1-b3 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 4\) , \( -2 i\bigr] \)
392.1-b4 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 74\) , \( -212 i\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph