Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-3249.1-c
Conductor 3249.1
Rank \( 1 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 3249.1-c over \(\Q(\sqrt{-1}) \)

Isogeny class 3249.1-c contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
3249.1-c1 \( \bigl[i\) , \( 0\) , \( i\) , \( 9\) , \( -29\bigr] \)
3249.1-c2 \( \bigl[i\) , \( 0\) , \( i\) , \( -1\) , \( 1\bigr] \)
3249.1-c3 \( \bigl[1\) , \( 0\) , \( 1\) , \( -7\) , \( 5\bigr] \)
3249.1-c4 \( \bigl[1\) , \( 0\) , \( 1\) , \( -102\) , \( 385\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph