Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-257.2-a
Conductor 257.2
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 257.2-a over \(\Q(\sqrt{-1}) \)

Isogeny class 257.2-a contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
257.2-a1 \( \bigl[i\) , \( i\) , \( 1\) , \( -i + 5\) , \( -3 i - 1\bigr] \)
257.2-a2 \( \bigl[i\) , \( i\) , \( 1\) , \( 4 i + 5\) , \( -4 i - 12\bigr] \)
257.2-a3 \( \bigl[1\) , \( -i\) , \( i\) , \( -i\) , \( 0\bigr] \)
257.2-a4 \( \bigl[i\) , \( i\) , \( 1\) , \( -6 i + 85\) , \( -274 i - 34\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph