Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-13122.1-b
Conductor 13122.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 13122.1-b over \(\Q(\sqrt{-1}) \)

Isogeny class 13122.1-b contains 4 curves linked by isogenies of degrees dividing 21.

Curve label Weierstrass Coefficients
13122.1-b1 \( \bigl[i\) , \( 1\) , \( 0\) , \( -1077\) , \( -13877\bigr] \)
13122.1-b2 \( \bigl[1\) , \( -1\) , \( 0\) , \( -42\) , \( -100\bigr] \)
13122.1-b3 \( \bigl[i\) , \( 1\) , \( 0\) , \( -852\) , \( -19664\bigr] \)
13122.1-b4 \( \bigl[1\) , \( -1\) , \( 0\) , \( 3\) , \( -1\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 21 & 3 & 7 \\ 21 & 1 & 7 & 3 \\ 3 & 7 & 1 & 21 \\ 7 & 3 & 21 & 1 \end{array}\right)\)

Isogeny graph