Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-106.1-a
Conductor 106.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 106.1-a over \(\Q(\sqrt{-1}) \)

Isogeny class 106.1-a contains 3 curves linked by isogenies of degrees dividing 9.

Curve label Weierstrass Coefficients
106.1-a1 \( \bigl[1\) , \( i - 1\) , \( i + 1\) , \( -i - 1\) , \( 0\bigr] \)
106.1-a2 \( \bigl[1\) , \( i - 1\) , \( i + 1\) , \( -76 i + 14\) , \( 225 i + 345\bigr] \)
106.1-a3 \( \bigl[1\) , \( i - 1\) , \( i + 1\) , \( -51 i - 31\) , \( 174 i + 30\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph