Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-1024.1-a
Conductor 1024.1
Rank \( 1 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 1024.1-a over \(\Q(\sqrt{-1}) \)

Isogeny class 1024.1-a contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
1024.1-a1 \( \bigl[0\) , \( -1\) , \( 0\) , \( 10 i + 11\) , \( 6 i - 23\bigr] \)
1024.1-a2 \( \bigl[0\) , \( 1\) , \( 0\) , \( -10 i + 11\) , \( 6 i + 23\bigr] \)
1024.1-a3 \( \bigl[0\) , \( 1\) , \( 0\) , \( 1\) , \( 1\bigr] \)
1024.1-a4 \( \bigl[0\) , \( i\) , \( 0\) , \( 2\) , \( 2 i\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph