Properties

Label 2.0.3.1-8281.5-a2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 8281 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}-a{x}^{2}+\left(-117a+117\right){x}-1245\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([1,0]),K([117,-117]),K([-1245,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([1,0]),Polrev([117,-117]),Polrev([-1245,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![1,0],K![117,-117],K![-1245,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((91)\) = \((-3a+1)\cdot(3a-2)\cdot(-4a+1)\cdot(4a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8281 \) = \(7\cdot7\cdot13\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-524596891)\) = \((-3a+1)^{9}\cdot(3a-2)^{9}\cdot(-4a+1)\cdot(4a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 275201898046865881 \) = \(7^{9}\cdot7^{9}\cdot13\cdot13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{178643795968}{524596891} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-15 a : 24 : 1\right)$
Height \(0.11769389848990561616590596575130811751\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{4}{3} a : -\frac{343}{9} a + \frac{167}{9} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.11769389848990561616590596575130811751 \)
Period: \( 0.48665117617449129754761236528692975435 \)
Tamagawa product: \( 81 \)  =  \(3^{2}\cdot3^{2}\cdot1\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 1.1904566884653928859600489514586624089 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+1)\) \(7\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)
\((3a-2)\) \(7\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)
\((-4a+1)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((4a-3)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 8281.5-a consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 91.b1
\(\Q\) 819.c1