Learn more about

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (23 matches)

  Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
61731.2-a1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-a \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -36927 a + 48468\) , \( -1388304 a - 2608018\bigr] \)
61731.2-a2 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-a \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 19 a + 6700\) , \( -244436 a + 127622\bigr] \)
61731.2-a3 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-a \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 4309 a - 7730\) , \( 192094 a - 234274\bigr] \)
61731.2-a4 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-a \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 589 a - 140\) , \( -1616 a - 3991\bigr] \)
61731.2-a5 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-a \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 11 a + 32\) , \( 16 a + 4\bigr] \)
61731.2-b1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-b \( \bigl[1\) , \( a\) , \( a + 1\) , \( 11237 a - 5950\) , \( 322105 a + 82626\bigr] \)
61731.2-b2 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-b \( \bigl[1\) , \( a\) , \( a + 1\) , \( 407 a - 535\) , \( 4786 a + 8982\bigr] \)
61731.2-b3 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-b \( \bigl[1\) , \( a\) , \( a + 1\) , \( -73 a + 95\) , \( -104 a - 168\bigr] \)
61731.2-b4 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-b \( \bigl[1\) , \( a\) , \( a + 1\) , \( -313 a + 410\) , \( 979 a + 1998\bigr] \)
61731.2-b5 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-b \( \bigl[1\) , \( a\) , \( a + 1\) , \( 1097 a - 10240\) , \( -68165 a + 397614\bigr] \)
61731.2-b6 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-b \( \bigl[1\) , \( a\) , \( a + 1\) , \( -4873 a + 6395\) , \( 66244 a + 128538\bigr] \)
61731.2-c1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-c \( \bigl[1\) , \( -1\) , \( a\) , \( 601 a - 417\) , \( 4772 a - 273\bigr] \)
61731.2-c2 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-c \( \bigl[1\) , \( a\) , \( 0\) , \( -a - 145\) , \( -222 a - 909\bigr] \)
61731.2-c3 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-c \( \bigl[1\) , \( a\) , \( 0\) , \( -56 a + 40\) , \( 81 a - 156\bigr] \)
61731.2-c4 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-c \( \bigl[1\) , \( -1\) , \( a\) , \( 46 a - 27\) , \( 44 a - 24\bigr] \)
61731.2-d1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-d \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 276592 a - 65855\) , \( -18648239 a - 36055987\bigr] \)
61731.2-d2 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-d \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -1238 a + 295\) , \( -7169 a - 11797\bigr] \)
61731.2-e1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-e \( \bigl[0\) , \( a + 1\) , \( 1\) , \( -84 a + 450\) , \( 4386 a - 1174\bigr] \)
61731.2-f1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-f \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 148 a - 35\) , \( 167 a + 545\bigr] \)
61731.2-g1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-g \( \bigl[1\) , \( a\) , \( 1\) , \( 42 a - 44\) , \( -343 a - 51\bigr] \)
61731.2-g2 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-g \( \bigl[1\) , \( a\) , \( 1\) , \( -238 a - 579\) , \( -3795 a - 5177\bigr] \)
61731.2-h1 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-h \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -7 a - 1\) , \( 15 a + 9\bigr] \)
61731.2-h2 \(\Q(\sqrt{-3}) \) 61731.2 61731.2-h \( \bigl[a\) , \( -a + 1\) , \( a + 1\) , \( -112 a + 119\) , \( 6 a + 459\bigr] \)
  Download to