Properties

Label 2.0.3.1-53361.1-c2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 53361 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(156a+93\right){x}-1524a+2591\)
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([1,0]),K([93,156]),K([2591,-1524])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([1,0]),Polrev([93,156]),Polrev([2591,-1524])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![1,0],K![93,156],K![2591,-1524]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((99a-264)\) = \((-2a+1)^{2}\cdot(-3a+1)^{2}\cdot(11)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 53361 \) = \(3^{2}\cdot7^{2}\cdot121\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1565415720a-1404525771)\) = \((-2a+1)^{6}\cdot(-3a+1)^{6}\cdot(11)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2224552296757742721 \) = \(3^{6}\cdot7^{6}\cdot121^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{122023936}{161051} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a + 6 : a + 54 : 1\right)$
Height \(2.1092811547747865585208113858238377887\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.1092811547747865585208113858238377887 \)
Period: \( 0.40403994319046413895351125112434715647 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.9362994860139223762727769909812930586 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(1\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((-3a+1)\) \(7\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((11)\) \(121\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5Cs.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 53361.1-c consists of curves linked by isogenies of degrees dividing 25.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.