Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-3844.2-a
Conductor 3844.2
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Elliptic curves in class 3844.2-a over \(\Q(\sqrt{-3}) \)

Isogeny class 3844.2-a contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
3844.2-a1 \( \bigl[1\) , \( -1\) , \( 1\) , \( -1\) , \( 1\bigr] \)
3844.2-a2 \( \bigl[1\) , \( -1\) , \( 1\) , \( -31\) , \( 5\bigr] \)
3844.2-a3 \( \bigl[1\) , \( -1\) , \( 1\) , \( -21\) , \( 41\bigr] \)
3844.2-a4 \( \bigl[1\) , \( -1\) , \( 1\) , \( -331\) , \( 2397\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph