Properties

Label 2.0.3.1-28899.6-f2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 28899 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a+46\right){x}+121a-223\)
sage: E = EllipticCurve([K([1,1]),K([-1,-1]),K([0,1]),K([46,-5]),K([-223,121])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([0,1]),Polrev([46,-5]),Polrev([-223,121])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,-1],K![0,1],K![46,-5],K![-223,121]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-177a+162)\) = \((-2a+1)^{2}\cdot(4a-3)^{2}\cdot(-5a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28899 \) = \(3^{2}\cdot13^{2}\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((17060463a-17845272)\) = \((-2a+1)^{9}\cdot(4a-3)^{8}\cdot(-5a+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 305064527847417 \) = \(3^{9}\cdot13^{8}\cdot19\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{11728499}{28899} a + \frac{4899605}{28899} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(9 a - 5 : -7 a + 7 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.86042314638811105974095866816608992291 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.9870621407366427827141214132118665965 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{3}^{*}\) Additive \(-1\) \(2\) \(9\) \(3\)
\((4a-3)\) \(13\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(2\) \(8\) \(2\)
\((-5a+2)\) \(19\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 28899.6-f consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.