Properties

 Base field $$\Q(\sqrt{-3})$$ Label 2.0.3.1-1936.1-a1 Conductor $$(44)$$ Conductor norm $$1936$$ CM no base-change yes: 44.a1,396.c1 Q-curve yes Torsion order $$3$$ Rank $$0$$

Related objects

Show commands for: Magma / SageMath / Pari/GP

Base field $$\Q(\sqrt{-3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x + 1$$; class number $$1$$.

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 1)
gp (2.8): K = nfinit(a^2 - a + 1);

Weierstrass equation

$$y^2 = x^{3} - a x^{2} + \left(-77 a + 77\right) x - 289$$
magma: E := ChangeRing(EllipticCurve([0, -a, 0, -77*a + 77, -289]),K);
sage: E = EllipticCurve(K, [0, -a, 0, -77*a + 77, -289])
gp (2.8): E = ellinit([0, -a, 0, -77*a + 77, -289],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

 $$\mathfrak{N}$$ = $$(44)$$ = $$\left(2\right)^{2} \cdot \left(11\right)$$ magma: Conductor(E); sage: E.conductor() $$N(\mathfrak{N})$$ = $$1936$$ = $$4^{2} \cdot 121$$ magma: Norm(Conductor(E)); sage: E.conductor().norm() $$\mathfrak{D}$$ = $$(340736)$$ = $$\left(2\right)^{8} \cdot \left(11\right)^{3}$$ magma: Discriminant(E); sage: E.discriminant() gp (2.8): E.disc $$N(\mathfrak{D})$$ = $$116101021696$$ = $$4^{8} \cdot 121^{3}$$ magma: Norm(Discriminant(E)); sage: E.discriminant().norm() gp (2.8): norm(E.disc) $$j$$ = $$-\frac{199794688}{1331}$$ magma: jInvariant(E); sage: E.j_invariant() gp (2.8): E.j $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) magma: HasComplexMultiplication(E); sage: E.has_cm(), E.cm_discriminant() $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: $$0$$
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: $$\Z/3\Z$$ magma: TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[2] magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp (2.8): elltors(E)[1] $\left(\frac{13}{3} a : -\frac{44}{9} a + \frac{22}{9} : 1\right)$ magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(2\right)$$ $$4$$ $$3$$ $$IV^*$$ Additive $$1$$ $$2$$ $$8$$ $$0$$
$$\left(11\right)$$ $$121$$ $$3$$ $$I_{3}$$ Split multiplicative $$-1$$ $$1$$ $$3$$ $$3$$

Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p$$ except those listed.

prime Image of Galois Representation
$$3$$ 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 1936.1-a consists of curves linked by isogenies of degree3.

Base change

This curve is the base-change of elliptic curves 44.a1, 396.c1, defined over $$\Q$$, so it is also a $$\Q$$-curve.