Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-1936.1-a
Conductor 1936.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Elliptic curves in class 1936.1-a over \(\Q(\sqrt{-3}) \)

Isogeny class 1936.1-a contains 2 curves linked by isogenies of degree 3.

Curve label Weierstrass Coefficients
1936.1-a1 \( \bigl[0\) , \( -a\) , \( 0\) , \( -77 a + 77\) , \( -289\bigr] \)
1936.1-a2 \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -3 a\) , \( -1\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph