Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-1875.1-c
Conductor 1875.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Elliptic curves in class 1875.1-c over \(\Q(\sqrt{-3}) \)

Isogeny class 1875.1-c contains 2 curves linked by isogenies of degree 5.

Curve label Weierstrass Coefficients
1875.1-c1 \( \bigl[0\) , \( 1\) , \( 1\) , \( -208\) , \( -1256\bigr] \)
1875.1-c2 \( \bigl[0\) , \( 1\) , \( 1\) , \( 2\) , \( 4\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph