Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-1875.1-b
Conductor 1875.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Elliptic curves in class 1875.1-b over \(\Q(\sqrt{-3}) \)

Isogeny class 1875.1-b contains 8 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
1875.1-b1 \( \bigl[1\) , \( 0\) , \( 1\) , \( -2751\) , \( -104477\bigr] \)
1875.1-b2 \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 23\bigr] \)
1875.1-b3 \( \bigl[1\) , \( 0\) , \( 1\) , \( 874\) , \( -5227\bigr] \)
1875.1-b4 \( \bigl[1\) , \( 0\) , \( 1\) , \( -251\) , \( -727\bigr] \)
1875.1-b5 \( \bigl[1\) , \( 0\) , \( 1\) , \( -126\) , \( 523\bigr] \)
1875.1-b6 \( \bigl[1\) , \( 0\) , \( 1\) , \( -3376\) , \( -75727\bigr] \)
1875.1-b7 \( \bigl[1\) , \( 0\) , \( 1\) , \( -2001\) , \( 34273\bigr] \)
1875.1-b8 \( \bigl[1\) , \( 0\) , \( 1\) , \( -54001\) , \( -4834477\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 16 & 8 & 4 & 8 & 2 & 16 & 4 \\ 16 & 1 & 8 & 4 & 2 & 8 & 4 & 16 \\ 8 & 8 & 1 & 2 & 4 & 4 & 8 & 8 \\ 4 & 4 & 2 & 1 & 2 & 2 & 4 & 4 \\ 8 & 2 & 4 & 2 & 1 & 4 & 2 & 8 \\ 2 & 8 & 4 & 2 & 4 & 1 & 8 & 2 \\ 16 & 4 & 8 & 4 & 2 & 8 & 1 & 16 \\ 4 & 16 & 8 & 4 & 8 & 2 & 16 & 1 \end{array}\right)\)

Isogeny graph