Properties

Label 2.0.3.1-12675.2-b3
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 12675 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(210a-210\right){x}+2277\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-210,210]),K([2277,0])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-210,210]),Polrev([2277,0])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-210,210],K![2277,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-130a+65)\) = \((-2a+1)\cdot(-4a+1)\cdot(4a-3)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12675 \) = \(3\cdot13\cdot13\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2798036865)\) = \((-2a+1)^{32}\cdot(-4a+1)\cdot(4a-3)\cdot(5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 7829010297899028225 \) = \(3^{32}\cdot13\cdot13\cdot25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1023887723039}{2798036865} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a + 18 : 3 a + 57 : 1\right)$
Height \(1.3862138033536862530133280531787458481\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-12 a : 12 a - 87 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3862138033536862530133280531787458481 \)
Period: \( 0.37063416743408705764148211638879342549 \)
Tamagawa product: \( 32 \)  =  \(2^{5}\cdot1\cdot1\cdot1\)
Torsion order: \(4\)
Leading coefficient: \( 2.3730398514707621779714838924241497091 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(32\) \(I_{32}\) Split multiplicative \(-1\) \(1\) \(32\) \(32\)
\((-4a+1)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((4a-3)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((5)\) \(25\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 12675.2-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 195.a7
\(\Q\) 585.g7