Properties

Label 2.0.3.1-110889.1-CMa1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 110889 \)
CM yes (\(-3\))
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}-a+2\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,1]),K([0,0]),K([2,-1])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,1]),Polrev([0,0]),Polrev([2,-1])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,1],K![0,0],K![2,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-360a+63)\) = \((-2a+1)^{4}\cdot(-7a+4)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 110889 \) = \(3^{4}\cdot37^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((891a-1080)\) = \((-2a+1)^{6}\cdot(-7a+4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 998001 \) = \(3^{6}\cdot37^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 0 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z[(1+\sqrt{-3})/2]\) (complex multiplication)
Geometric endomorphism ring: \(\Z[(1+\sqrt{-3})/2]\)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{U}(1)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-2 a + 1 : -2 a - 1 : 1\right)$ $\left(-1 : -a + 1 : 1\right)$
Heights \(0.95012803481821618733420527593041820609\) \(0.31670934493940539577806842531013940203\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.075228606878960452632260504063342903679 \)
Period: \( 4.4420192558559418852128181535285937496 \)
Tamagawa product: \( 3 \)  =  \(3\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 4.6303526740063554708484726635220760852 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(3\) \(IV\) Additive \(-1\) \(4\) \(6\) \(0\)
\((-7a+4)\) \(37\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=3\), a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 110889.1-CMa consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.