Properties

Base field \(\Q(\sqrt{-11}) \)
Label 2.0.11.1-3249.2-b
Conductor 3249.2
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

Elliptic curves in class 3249.2-b over \(\Q(\sqrt{-11}) \)

Isogeny class 3249.2-b contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
3249.2-b1 \( \bigl[1\) , \( 0\) , \( 1\) , \( 8\) , \( 29\bigr] \)
3249.2-b2 \( \bigl[1\) , \( 0\) , \( 1\) , \( -2\) , \( -1\bigr] \)
3249.2-b3 \( \bigl[1\) , \( 0\) , \( 1\) , \( -7\) , \( 5\bigr] \)
3249.2-b4 \( \bigl[1\) , \( 0\) , \( 1\) , \( -102\) , \( 385\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph