Properties

Label 2.0.11.1-3249.2-a1
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 3249 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}-{x}^{2}-2{x}+2\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([1,0]),K([-2,0]),K([2,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([-2,0]),Polrev([2,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![1,0],K![-2,0],K![2,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((57)\) = \((-a)\cdot(a-1)\cdot(19)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3249 \) = \(3\cdot3\cdot361\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-171)\) = \((-a)^{2}\cdot(a-1)^{2}\cdot(19)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 29241 \) = \(3^{2}\cdot3^{2}\cdot361\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1404928}{171} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(\frac{2}{25} a + \frac{32}{25} : -\frac{8}{125} a - \frac{103}{125} : 1\right)$ $\left(2 : -2 : 1\right)$
Heights \(1.4707012719946282551368053068654550455\) \(0.037574592736823752824805111216710408405\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.052084338789215934674833960562067556353 \)
Period: \( 5.3286441159112314993311429764250421696 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.6777961134691256571050411688267746408 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a-1)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((19)\) \(361\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 3249.2-a consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 57.a1
\(\Q\) 6897.f1