Properties

Label 2.0.11.1-27.2-a5
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 27 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-19a+15\right){x}+50a-96\)
sage: E = EllipticCurve([K([1,0]),K([-1,-1]),K([0,1]),K([15,-19]),K([-96,50])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([0,1]),Polrev([15,-19]),Polrev([-96,50])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,-1],K![0,1],K![15,-19],K![-96,50]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-3a)\) = \((-a)^{2}\cdot(a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((846003a+1955520)\) = \((-a)^{26}\cdot(a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 7625597484987 \) = \(3^{26}\cdot3\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2927543402641}{3486784401} a + \frac{1635099303025}{3486784401} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a + \frac{3}{4} : -2 a - \frac{3}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.1448172008209763677345037247689049634 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 0.69035074703056844248515742598533240562 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(4\) \(I_{20}^{*}\) Additive \(-1\) \(2\) \(26\) \(20\)
\((a-1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 10 and 20.
Its isogeny class 27.2-a consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.