Properties

Base field \(\Q(\sqrt{-11}) \)
Label 2.0.11.1-121.1-a
Conductor 121.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

Elliptic curves in class 121.1-a over \(\Q(\sqrt{-11}) \)

Isogeny class 121.1-a contains 2 curves linked by isogenies of degree 11.

Curve label Weierstrass Coefficients
121.1-a1 \( \bigl[1\) , \( 1\) , \( 1\) , \( -30\) , \( -76\bigr] \)
121.1-a2 \( \bigl[1\) , \( 1\) , \( 0\) , \( -2\) , \( -7\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph