Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$

$K$ is the global number field defined by \(x^{6} \) \(\mathstrut +\mathstrut 5 x^{4} \) \(\mathstrut +\mathstrut 6 x^{2} \) \(\mathstrut +\mathstrut 1 \)

$\times$ \(\chi_{ 28 } ( 1, ·)\) \(\chi_{ 28 } ( 25, ·)\) \(\chi_{ 28 } ( 23, ·)\) \(\chi_{ 28 } ( 9, ·)\) \(\chi_{ 28 } ( 11, ·)\) \(\chi_{ 28 } ( 15, ·)\)
\(\chi_{ 28 }(1, ·)\) \(\chi_{ 28 } ( 1, ·)\) \(\chi_{ 28 } ( 25, ·)\) \(\chi_{ 28 } ( 23, ·)\) \(\chi_{ 28 } ( 9, ·)\) \(\chi_{ 28 } ( 11, ·)\) \(\chi_{ 28 } ( 15, ·)\)
\(\chi_{ 28 }(25, ·)\) \(\chi_{ 28 } ( 25, ·)\) \(\chi_{ 28 } ( 9, ·)\) \(\chi_{ 28 } ( 15, ·)\) \(\chi_{ 28 } ( 1, ·)\) \(\chi_{ 28 } ( 23, ·)\) \(\chi_{ 28 } ( 11, ·)\)
\(\chi_{ 28 }(23, ·)\) \(\chi_{ 28 } ( 23, ·)\) \(\chi_{ 28 } ( 15, ·)\) \(\chi_{ 28 } ( 25, ·)\) \(\chi_{ 28 } ( 11, ·)\) \(\chi_{ 28 } ( 1, ·)\) \(\chi_{ 28 } ( 9, ·)\)
\(\chi_{ 28 }(9, ·)\) \(\chi_{ 28 } ( 9, ·)\) \(\chi_{ 28 } ( 1, ·)\) \(\chi_{ 28 } ( 11, ·)\) \(\chi_{ 28 } ( 25, ·)\) \(\chi_{ 28 } ( 15, ·)\) \(\chi_{ 28 } ( 23, ·)\)
\(\chi_{ 28 }(11, ·)\) \(\chi_{ 28 } ( 11, ·)\) \(\chi_{ 28 } ( 23, ·)\) \(\chi_{ 28 } ( 1, ·)\) \(\chi_{ 28 } ( 15, ·)\) \(\chi_{ 28 } ( 9, ·)\) \(\chi_{ 28 } ( 25, ·)\)
\(\chi_{ 28 }(15, ·)\) \(\chi_{ 28 } ( 15, ·)\) \(\chi_{ 28 } ( 11, ·)\) \(\chi_{ 28 } ( 9, ·)\) \(\chi_{ 28 } ( 23, ·)\) \(\chi_{ 28 } ( 25, ·)\) \(\chi_{ 28 } ( 1, ·)\)