Properties

 Conductor 2475 Order 60 Real No Primitive No Parity Odd Orbit Label 9900.mf

Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(9900)
sage: chi = H[97]
pari: [g,chi] = znchar(Mod(97,9900))

Basic properties

 sage: chi.conductor() pari: znconreyconductor(g,chi) Conductor = 2475 sage: chi.multiplicative_order() pari: charorder(g,chi) Order = 60 Real = No sage: chi.is_primitive() pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = No sage: chi.is_odd() pari: zncharisodd(g,chi) Parity = Odd Orbit label = 9900.mf Orbit index = 318

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Values on generators

$$(4951,5501,2377,4501)$$ → $$(1,e\left(\frac{2}{3}\right),e\left(\frac{17}{20}\right),e\left(\frac{3}{5}\right))$$

Values

 -1 1 7 13 17 19 23 29 31 37 41 43 $$-1$$ $$1$$ $$e\left(\frac{7}{60}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{41}{60}\right)$$ $$e\left(\frac{17}{30}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{5}{12}\right)$$
value at  e.g. 2

Related number fields

 Field of values $$\Q(\zeta_{60})$$