Properties

Modulus 9900
Conductor 1980
Order 60
Real no
Primitive no
Minimal yes
Parity odd
Orbit label 9900.mm

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(9900)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([30,40,15,42]))
 
pari: [g,chi] = znchar(Mod(7,9900))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 9900
Conductor = 1980
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 60
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 9900.mm
Orbit index = 325

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{9900}(7,\cdot)\) \(\chi_{9900}(607,\cdot)\) \(\chi_{9900}(943,\cdot)\) \(\chi_{9900}(1843,\cdot)\) \(\chi_{9900}(3307,\cdot)\) \(\chi_{9900}(3643,\cdot)\) \(\chi_{9900}(4243,\cdot)\) \(\chi_{9900}(4507,\cdot)\) \(\chi_{9900}(5143,\cdot)\) \(\chi_{9900}(5407,\cdot)\) \(\chi_{9900}(6343,\cdot)\) \(\chi_{9900}(6943,\cdot)\) \(\chi_{9900}(7207,\cdot)\) \(\chi_{9900}(7807,\cdot)\) \(\chi_{9900}(8707,\cdot)\) \(\chi_{9900}(9643,\cdot)\)

Values on generators

\((4951,5501,2377,4501)\) → \((-1,e\left(\frac{2}{3}\right),i,e\left(\frac{7}{10}\right))\)

Values

-117131719232931374143
\(-1\)\(1\)\(e\left(\frac{19}{60}\right)\)\(e\left(\frac{47}{60}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{5}{12}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{60})\)