Properties

Modulus 9900
Conductor 9900
Order 60
Real no
Primitive yes
Minimal yes
Parity odd
Orbit label 9900.lt

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(9900)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([30,10,51,48]))
 
pari: [g,chi] = znchar(Mod(47,9900))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 9900
Conductor = 9900
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 60
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 9900.lt
Orbit index = 306

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{9900}(47,\cdot)\) \(\chi_{9900}(983,\cdot)\) \(\chi_{9900}(1103,\cdot)\) \(\chi_{9900}(1127,\cdot)\) \(\chi_{9900}(1523,\cdot)\) \(\chi_{9900}(2363,\cdot)\) \(\chi_{9900}(2567,\cdot)\) \(\chi_{9900}(3287,\cdot)\) \(\chi_{9900}(4403,\cdot)\) \(\chi_{9900}(5663,\cdot)\) \(\chi_{9900}(6647,\cdot)\) \(\chi_{9900}(7583,\cdot)\) \(\chi_{9900}(7727,\cdot)\) \(\chi_{9900}(8123,\cdot)\) \(\chi_{9900}(9167,\cdot)\) \(\chi_{9900}(9887,\cdot)\)

Values on generators

\((4951,5501,2377,4501)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{17}{20}\right),e\left(\frac{4}{5}\right))\)

Values

-117131719232931374143
\(-1\)\(1\)\(e\left(\frac{1}{60}\right)\)\(e\left(\frac{17}{60}\right)\)\(-i\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(i\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{11}{12}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{60})\)