# Properties

 Modulus 99 Conductor 99 Order 30 Real no Primitive yes Minimal yes Parity odd Orbit label 99.n

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(99)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([25,18]))

pari: [g,chi] = znchar(Mod(86,99))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Modulus = 99 Conductor = 99 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 30 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = yes Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = odd Orbit label = 99.n Orbit index = 14

## Galois orbit

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(56,46)$$ → $$(e\left(\frac{5}{6}\right),e\left(\frac{3}{5}\right))$$

## Values

 -1 1 2 4 5 7 8 10 13 14 16 17 $$-1$$ $$1$$ $$e\left(\frac{13}{30}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{17}{30}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$1$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{29}{30}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{9}{10}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{15})$$

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 99 }(86,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{99}(86,\cdot)) = \sum_{r\in \Z/99\Z} \chi_{99}(86,r) e\left(\frac{2r}{99}\right) = 9.7543237481+-1.9629488576i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 99 }(86,·),\chi_{ 99 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{99}(86,\cdot),\chi_{99}(1,\cdot)) = \sum_{r\in \Z/99\Z} \chi_{99}(86,r) \chi_{99}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 99 }(86,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{99}(86,·)) = \sum_{r \in \Z/99\Z} \chi_{99}(86,r) e\left(\frac{1 r + 2 r^{-1}}{99}\right) = -12.604993263+2.6792740279i$$