Properties

Modulus 99
Conductor 99
Order 30
Real no
Primitive yes
Minimal yes
Parity odd
Orbit label 99.o

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(99)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([10,3]))
 
pari: [g,chi] = znchar(Mod(13,99))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 99
Conductor = 99
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 30
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 99.o
Orbit index = 15

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{99}(7,\cdot)\) \(\chi_{99}(13,\cdot)\) \(\chi_{99}(40,\cdot)\) \(\chi_{99}(52,\cdot)\) \(\chi_{99}(61,\cdot)\) \(\chi_{99}(79,\cdot)\) \(\chi_{99}(85,\cdot)\) \(\chi_{99}(94,\cdot)\)

Values on generators

\((56,46)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{10}\right))\)

Values

-11245781013141617
\(-1\)\(1\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{3}{10}\right)\)\(-1\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{9}{10}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{15})\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 99 }(13,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{99}(13,\cdot)) = \sum_{r\in \Z/99\Z} \chi_{99}(13,r) e\left(\frac{2r}{99}\right) = 8.3200196391+-5.4568556151i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 99 }(13,·),\chi_{ 99 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{99}(13,\cdot),\chi_{99}(1,\cdot)) = \sum_{r\in \Z/99\Z} \chi_{99}(13,r) \chi_{99}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 99 }(13,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{99}(13,·)) = \sum_{r \in \Z/99\Z} \chi_{99}(13,r) e\left(\frac{1 r + 2 r^{-1}}{99}\right) = 6.4928926992+-1.3801069474i \)