# Properties

 Label 95.91 Modulus $95$ Conductor $19$ Order $18$ Real no Primitive no Minimal yes Parity odd

# Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(95)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,11]))

pari: [g,chi] = znchar(Mod(91,95))

## Basic properties

 Modulus: $$95$$ Conductor: $$19$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{19}(15,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 95.n

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(77,21)$$ → $$(1,e\left(\frac{11}{18}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$ $$-1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{18}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: $$\Q(\zeta_{19})$$

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 95 }(91,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{95}(91,\cdot)) = \sum_{r\in \Z/95\Z} \chi_{95}(91,r) e\left(\frac{2r}{95}\right) = -1.9720366159+-3.8872961793i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 95 }(91,·),\chi_{ 95 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{95}(91,\cdot),\chi_{95}(1,\cdot)) = \sum_{r\in \Z/95\Z} \chi_{95}(91,r) \chi_{95}(1,1-r) = -3$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 95 }(91,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{95}(91,·)) = \sum_{r \in \Z/95\Z} \chi_{95}(91,r) e\left(\frac{1 r + 2 r^{-1}}{95}\right) = 6.7759998531+2.4662622539i$$