Properties

Conductor 95
Order 18
Real No
Primitive Yes
Parity Odd
Orbit Label 95.o

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(95)
sage: chi = H[14]
pari: [g,chi] = znchar(Mod(14,95))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 95
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 18
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = Yes
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 95.o
Orbit index = 15

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{95}(14,\cdot)\) \(\chi_{95}(29,\cdot)\) \(\chi_{95}(34,\cdot)\) \(\chi_{95}(59,\cdot)\) \(\chi_{95}(79,\cdot)\) \(\chi_{95}(89,\cdot)\)

Values on generators

\((77,21)\) → \((-1,e\left(\frac{7}{18}\right))\)

Values

-112346789111213
\(-1\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{4}{9}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{9})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 95 }(14,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{95}(14,\cdot)) = \sum_{r\in \Z/95\Z} \chi_{95}(14,r) e\left(\frac{2r}{95}\right) = 4.4096079273+-8.6922585055i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 95 }(14,·),\chi_{ 95 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{95}(14,\cdot),\chi_{95}(1,\cdot)) = \sum_{r\in \Z/95\Z} \chi_{95}(14,r) \chi_{95}(1,1-r) = 1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 95 }(14,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{95}(14,·)) = \sum_{r \in \Z/95\Z} \chi_{95}(14,r) e\left(\frac{1 r + 2 r^{-1}}{95}\right) = 0.0 \)