Properties

Conductor 23
Order 22
Real No
Primitive No
Parity Odd
Orbit Label 92.f

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(92)
sage: chi = H[65]
pari: [g,chi] = znchar(Mod(65,92))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 23
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 22
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 92.f
Orbit index = 6

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{92}(5,\cdot)\) \(\chi_{92}(17,\cdot)\) \(\chi_{92}(21,\cdot)\) \(\chi_{92}(33,\cdot)\) \(\chi_{92}(37,\cdot)\) \(\chi_{92}(53,\cdot)\) \(\chi_{92}(57,\cdot)\) \(\chi_{92}(61,\cdot)\) \(\chi_{92}(65,\cdot)\) \(\chi_{92}(89,\cdot)\)

Inducing primitive character

\(\chi_{23}(19,\cdot)\)

Values on generators

\((47,5)\) → \((1,e\left(\frac{15}{22}\right))\)

Values

-113579111315171921
\(-1\)\(1\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{19}{22}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{11})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 92 }(65,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{92}(65,\cdot)) = \sum_{r\in \Z/92\Z} \chi_{92}(65,r) e\left(\frac{r}{46}\right) = 9.1664282032+2.8242864579i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 92 }(65,·),\chi_{ 92 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{92}(65,\cdot),\chi_{92}(1,\cdot)) = \sum_{r\in \Z/92\Z} \chi_{92}(65,r) \chi_{92}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 92 }(65,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{92}(65,·)) = \sum_{r \in \Z/92\Z} \chi_{92}(65,r) e\left(\frac{1 r + 2 r^{-1}}{92}\right) = -0.0 \)