# Properties

 Conductor 1 Order 1 Real Yes Primitive No Parity Even Orbit Label 92.a

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(92)
sage: chi = H[1]
pari: [g,chi] = znchar(Mod(1,92))

## Basic properties

 sage: chi.conductor() pari: znconreyconductor(g,chi) Conductor = 1 sage: chi.multiplicative_order() pari: charorder(g,chi) Order = 1 Real = Yes sage: chi.is_primitive() pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = No sage: chi.is_odd() pari: zncharisodd(g,chi) Parity = Even Orbit label = 92.a Orbit index = 1

## Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(47,5)$$ → $$(1,1)$$

## Values

 -1 1 3 5 7 9 11 13 15 17 19 21 $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
$$\tau_{ a }( \chi_{ 92 }(1,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{92}(1,\cdot)) = \sum_{r\in \Z/92\Z} \chi_{92}(1,r) e\left(\frac{r}{46}\right) = 2.0$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
$$J(\chi_{ 92 }(1,·),\chi_{ 92 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{92}(1,\cdot),\chi_{92}(1,\cdot)) = \sum_{r\in \Z/92\Z} \chi_{92}(1,r) \chi_{92}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
$$K(a,b,\chi_{ 92 }(1,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{92}(1,·)) = \sum_{r \in \Z/92\Z} \chi_{92}(1,r) e\left(\frac{1 r + 2 r^{-1}}{92}\right) = -0.0$$