Properties

Modulus 91
Structure \(C_{12}\times C_{6}\)
Order 72

Learn more about

Show commands for: SageMath / Pari/GP

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(91)
pari: g = idealstar(,91,2)

Character group

sage: G.order()
pari: g.no
Order = 72
sage: H.invariants()
pari: g.cyc
Structure = \(C_{12}\times C_{6}\)
sage: H.gens()
pari: g.gen
Generators = $\chi_{91}(15,\cdot)$, $\chi_{91}(66,\cdot)$

First 32 of 72 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 2 3 4 5 6 8 9 10 11 12
\(\chi_{91}(1,\cdot)\) 91.a 1 No \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{91}(2,\cdot)\) 91.x 12 Yes \(-1\) \(1\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{91}(3,\cdot)\) 91.m 6 Yes \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{91}(4,\cdot)\) 91.k 6 Yes \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{91}(5,\cdot)\) 91.bb 12 Yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{91}(6,\cdot)\) 91.bc 12 Yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\)
\(\chi_{91}(8,\cdot)\) 91.j 4 No \(-1\) \(1\) \(i\) \(1\) \(-1\) \(i\) \(i\) \(-i\) \(1\) \(-1\) \(-i\) \(-1\)
\(\chi_{91}(9,\cdot)\) 91.g 3 Yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{91}(10,\cdot)\) 91.p 6 Yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{91}(11,\cdot)\) 91.bd 12 Yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(1\) \(-1\) \(-i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{91}(12,\cdot)\) 91.s 6 Yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{91}(15,\cdot)\) 91.y 12 No \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\)
\(\chi_{91}(16,\cdot)\) 91.h 3 Yes \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{91}(17,\cdot)\) 91.l 6 Yes \(-1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{91}(18,\cdot)\) 91.z 12 Yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{91}(19,\cdot)\) 91.w 12 Yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(1\) \(1\) \(i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{91}(20,\cdot)\) 91.bc 12 Yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\)
\(\chi_{91}(22,\cdot)\) 91.f 3 No \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)
\(\chi_{91}(23,\cdot)\) 91.k 6 Yes \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{91}(24,\cdot)\) 91.w 12 Yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(1\) \(1\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{91}(25,\cdot)\) 91.r 6 Yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{91}(27,\cdot)\) 91.d 2 No \(-1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(1\) \(-1\)
\(\chi_{91}(29,\cdot)\) 91.f 3 No \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{91}(30,\cdot)\) 91.u 6 Yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{91}(31,\cdot)\) 91.bb 12 Yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{91}(32,\cdot)\) 91.x 12 Yes \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{91}(33,\cdot)\) 91.w 12 Yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(1\) \(1\) \(-i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{91}(34,\cdot)\) 91.i 4 Yes \(1\) \(1\) \(i\) \(-1\) \(-1\) \(-i\) \(-i\) \(-i\) \(1\) \(1\) \(-i\) \(1\)
\(\chi_{91}(36,\cdot)\) 91.q 6 No \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)
\(\chi_{91}(37,\cdot)\) 91.x 12 Yes \(-1\) \(1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{91}(38,\cdot)\) 91.s 6 Yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{91}(40,\cdot)\) 91.o 6 No \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)