Properties

Conductor 43
Order 14
Real No
Primitive No
Parity Odd
Orbit Label 86.f

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(86)
sage: chi = H[39]
pari: [g,chi] = znchar(Mod(39,86))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 43
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 14
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 86.f
Orbit index = 6

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{86}(27,\cdot)\) \(\chi_{86}(39,\cdot)\) \(\chi_{86}(45,\cdot)\) \(\chi_{86}(51,\cdot)\) \(\chi_{86}(65,\cdot)\) \(\chi_{86}(75,\cdot)\)

Inducing primitive character

\(\chi_{43}(39,\cdot)\)

Values on generators

\(3\) → \(e\left(\frac{11}{14}\right)\)

Values

-113579111315171921
\(-1\)\(1\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{9}{14}\right)\)\(-1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{2}{7}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{7})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 86 }(39,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{86}(39,\cdot)) = \sum_{r\in \Z/86\Z} \chi_{86}(39,r) e\left(\frac{r}{43}\right) = 6.1763094418+-2.2029983385i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 86 }(39,·),\chi_{ 86 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{86}(39,\cdot),\chi_{86}(1,\cdot)) = \sum_{r\in \Z/86\Z} \chi_{86}(39,r) \chi_{86}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 86 }(39,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{86}(39,·)) = \sum_{r \in \Z/86\Z} \chi_{86}(39,r) e\left(\frac{1 r + 2 r^{-1}}{86}\right) = -5.6534016825+7.0891414827i \)