Properties

Modulus 79
Conductor 79
Order 6
Real no
Primitive yes
Minimal yes
Parity odd
Orbit label 79.d

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(79)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(24,79))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 79
Conductor = 79
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 6
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 79.d
Orbit index = 4

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{79}(24,\cdot)\) \(\chi_{79}(56,\cdot)\)

Values on generators

\(3\) → \(e\left(\frac{1}{6}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 79 }(24,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{79}(24,\cdot)) = \sum_{r\in \Z/79\Z} \chi_{79}(24,r) e\left(\frac{2r}{79}\right) = 8.4205160533+-2.8451554257i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 79 }(24,·),\chi_{ 79 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{79}(24,\cdot),\chi_{79}(1,\cdot)) = \sum_{r\in \Z/79\Z} \chi_{79}(24,r) \chi_{79}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 79 }(24,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{79}(24,·)) = \sum_{r \in \Z/79\Z} \chi_{79}(24,r) e\left(\frac{1 r + 2 r^{-1}}{79}\right) = 0.9286732708+0.5361697629i \)