Properties

Conductor 37
Order 36
Real No
Primitive No
Parity Odd
Orbit Label 74.i

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(74)
sage: chi = H[61]
pari: [g,chi] = znchar(Mod(61,74))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 37
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 36
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 74.i
Orbit index = 9

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{74}(5,\cdot)\) \(\chi_{74}(13,\cdot)\) \(\chi_{74}(15,\cdot)\) \(\chi_{74}(17,\cdot)\) \(\chi_{74}(19,\cdot)\) \(\chi_{74}(35,\cdot)\) \(\chi_{74}(39,\cdot)\) \(\chi_{74}(55,\cdot)\) \(\chi_{74}(57,\cdot)\) \(\chi_{74}(59,\cdot)\) \(\chi_{74}(61,\cdot)\) \(\chi_{74}(69,\cdot)\)

Inducing primitive character

\(\chi_{37}(24,\cdot)\)

Values on generators

\(39\) → \(e\left(\frac{29}{36}\right)\)

Values

-113579111315171921
\(-1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{13}{18}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{36})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 74 }(61,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{74}(61,\cdot)) = \sum_{r\in \Z/74\Z} \chi_{74}(61,r) e\left(\frac{r}{37}\right) = 4.5655867289+-4.0193802782i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 74 }(61,·),\chi_{ 74 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{74}(61,\cdot),\chi_{74}(1,\cdot)) = \sum_{r\in \Z/74\Z} \chi_{74}(61,r) \chi_{74}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 74 }(61,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{74}(61,·)) = \sum_{r \in \Z/74\Z} \chi_{74}(61,r) e\left(\frac{1 r + 2 r^{-1}}{74}\right) = -2.771673722+-3.9583603015i \)