Properties

Conductor 73
Order 36
Real No
Primitive Yes
Parity Even
Orbit Label 73.k

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(73)
sage: chi = H[50]
pari: [g,chi] = znchar(Mod(50,73))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 73
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 36
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = Yes
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 73.k
Orbit index = 11

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{73}(6,\cdot)\) \(\chi_{73}(12,\cdot)\) \(\chi_{73}(19,\cdot)\) \(\chi_{73}(23,\cdot)\) \(\chi_{73}(25,\cdot)\) \(\chi_{73}(35,\cdot)\) \(\chi_{73}(38,\cdot)\) \(\chi_{73}(48,\cdot)\) \(\chi_{73}(50,\cdot)\) \(\chi_{73}(54,\cdot)\) \(\chi_{73}(61,\cdot)\) \(\chi_{73}(67,\cdot)\)

Values on generators

\(5\) → \(e\left(\frac{5}{36}\right)\)

Values

-11234567891011
\(1\)\(1\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(i\)\(e\left(\frac{23}{36}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{36})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 73 }(50,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{73}(50,\cdot)) = \sum_{r\in \Z/73\Z} \chi_{73}(50,r) e\left(\frac{2r}{73}\right) = 8.414195849+-1.4836806308i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 73 }(50,·),\chi_{ 73 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{73}(50,\cdot),\chi_{73}(1,\cdot)) = \sum_{r\in \Z/73\Z} \chi_{73}(50,r) \chi_{73}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 73 }(50,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{73}(50,·)) = \sum_{r \in \Z/73\Z} \chi_{73}(50,r) e\left(\frac{1 r + 2 r^{-1}}{73}\right) = 8.0823442678+2.9417327366i \)