Properties

Label 709.28
Modulus $709$
Conductor $709$
Order $118$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(709)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([9]))
 
pari: [g,chi] = znchar(Mod(28,709))
 

Basic properties

Modulus: \(709\)
Conductor: \(709\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(118\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 709.h

\(\chi_{709}(12,\cdot)\) \(\chi_{709}(28,\cdot)\) \(\chi_{709}(45,\cdot)\) \(\chi_{709}(47,\cdot)\) \(\chi_{709}(64,\cdot)\) \(\chi_{709}(76,\cdot)\) \(\chi_{709}(99,\cdot)\) \(\chi_{709}(102,\cdot)\) \(\chi_{709}(105,\cdot)\) \(\chi_{709}(125,\cdot)\) \(\chi_{709}(145,\cdot)\) \(\chi_{709}(158,\cdot)\) \(\chi_{709}(169,\cdot)\) \(\chi_{709}(191,\cdot)\) \(\chi_{709}(194,\cdot)\) \(\chi_{709}(230,\cdot)\) \(\chi_{709}(231,\cdot)\) \(\chi_{709}(234,\cdot)\) \(\chi_{709}(238,\cdot)\) \(\chi_{709}(240,\cdot)\) \(\chi_{709}(245,\cdot)\) \(\chi_{709}(275,\cdot)\) \(\chi_{709}(285,\cdot)\) \(\chi_{709}(309,\cdot)\) \(\chi_{709}(310,\cdot)\) \(\chi_{709}(319,\cdot)\) \(\chi_{709}(324,\cdot)\) \(\chi_{709}(335,\cdot)\) \(\chi_{709}(346,\cdot)\) \(\chi_{709}(366,\cdot)\) ...

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\(2\) → \(e\left(\frac{9}{118}\right)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{9}{118}\right)\)\(e\left(\frac{7}{59}\right)\)\(e\left(\frac{9}{59}\right)\)\(e\left(\frac{33}{59}\right)\)\(e\left(\frac{23}{118}\right)\)\(e\left(\frac{57}{59}\right)\)\(e\left(\frac{27}{118}\right)\)\(e\left(\frac{14}{59}\right)\)\(e\left(\frac{75}{118}\right)\)\(e\left(\frac{6}{59}\right)\)
value at e.g. 2

Related number fields

Field of values: $\Q(\zeta_{59})$
Fixed field: Number field defined by a degree 118 polynomial

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 709 }(28,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{709}(28,\cdot)) = \sum_{r\in \Z/709\Z} \chi_{709}(28,r) e\left(\frac{2r}{709}\right) = 3.2011846846+26.4339254863i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 709 }(28,·),\chi_{ 709 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{709}(28,\cdot),\chi_{709}(1,\cdot)) = \sum_{r\in \Z/709\Z} \chi_{709}(28,r) \chi_{709}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 709 }(28,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{709}(28,·)) = \sum_{r \in \Z/709\Z} \chi_{709}(28,r) e\left(\frac{1 r + 2 r^{-1}}{709}\right) = -8.3741203099+-2.0458525636i \)