Properties

Conductor 17
Order 8
Real No
Primitive No
Parity Even
Orbit Label 68.h

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(68)
sage: chi = H[9]
pari: [g,chi] = znchar(Mod(9,68))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 17
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 8
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 68.h
Orbit index = 8

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{68}(9,\cdot)\) \(\chi_{68}(25,\cdot)\) \(\chi_{68}(49,\cdot)\) \(\chi_{68}(53,\cdot)\)

Inducing primitive character

\(\chi_{17}(9,\cdot)\)

Values on generators

\((35,37)\) → \((1,e\left(\frac{1}{8}\right))\)

Values

-113579111315192123
\(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(i\)\(e\left(\frac{7}{8}\right)\)\(-1\)\(-i\)\(-i\)\(-1\)\(e\left(\frac{7}{8}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{8})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 68 }(9,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{68}(9,\cdot)) = \sum_{r\in \Z/68\Z} \chi_{68}(9,r) e\left(\frac{r}{34}\right) = 5.5534228442+6.0958588167i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 68 }(9,·),\chi_{ 68 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{68}(9,\cdot),\chi_{68}(1,\cdot)) = \sum_{r\in \Z/68\Z} \chi_{68}(9,r) \chi_{68}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 68 }(9,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{68}(9,·)) = \sum_{r \in \Z/68\Z} \chi_{68}(9,r) e\left(\frac{1 r + 2 r^{-1}}{68}\right) = 0.0 \)