Properties

Label 68.11
Modulus $68$
Conductor $68$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(68)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([8,7]))
 
pari: [g,chi] = znchar(Mod(11,68))
 

Basic properties

Modulus: \(68\)
Conductor: \(68\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 68.i

\(\chi_{68}(3,\cdot)\) \(\chi_{68}(7,\cdot)\) \(\chi_{68}(11,\cdot)\) \(\chi_{68}(23,\cdot)\) \(\chi_{68}(27,\cdot)\) \(\chi_{68}(31,\cdot)\) \(\chi_{68}(39,\cdot)\) \(\chi_{68}(63,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((35,37)\) → \((-1,e\left(\frac{7}{16}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\(1\)\(1\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(-i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(i\)\(e\left(\frac{1}{16}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{68})^+\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 68 }(11,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{68}(11,\cdot)) = \sum_{r\in \Z/68\Z} \chi_{68}(11,r) e\left(\frac{r}{34}\right) = -0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 68 }(11,·),\chi_{ 68 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{68}(11,\cdot),\chi_{68}(1,\cdot)) = \sum_{r\in \Z/68\Z} \chi_{68}(11,r) \chi_{68}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 68 }(11,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{68}(11,·)) = \sum_{r \in \Z/68\Z} \chi_{68}(11,r) e\left(\frac{1 r + 2 r^{-1}}{68}\right) = 1.2775971522+0.5291980677i \)