Properties

Label 67.24
Modulus $67$
Conductor $67$
Order $11$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(67)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([7]))
 
pari: [g,chi] = znchar(Mod(24,67))
 

Basic properties

Modulus: \(67\)
Conductor: \(67\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(11\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 67.e

\(\chi_{67}(9,\cdot)\) \(\chi_{67}(14,\cdot)\) \(\chi_{67}(15,\cdot)\) \(\chi_{67}(22,\cdot)\) \(\chi_{67}(24,\cdot)\) \(\chi_{67}(25,\cdot)\) \(\chi_{67}(40,\cdot)\) \(\chi_{67}(59,\cdot)\) \(\chi_{67}(62,\cdot)\) \(\chi_{67}(64,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\(2\) → \(e\left(\frac{7}{11}\right)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{6}{11}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 11.11.1822837804551761449.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 67 }(24,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{67}(24,\cdot)) = \sum_{r\in \Z/67\Z} \chi_{67}(24,r) e\left(\frac{2r}{67}\right) = 6.6389666268+-4.787914173i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 67 }(24,·),\chi_{ 67 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{67}(24,\cdot),\chi_{67}(1,\cdot)) = \sum_{r\in \Z/67\Z} \chi_{67}(24,r) \chi_{67}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 67 }(24,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{67}(24,·)) = \sum_{r \in \Z/67\Z} \chi_{67}(24,r) e\left(\frac{1 r + 2 r^{-1}}{67}\right) = 0.7686168129+-1.6830360562i \)