Properties

Label 667.q
Modulus $667$
Conductor $667$
Order $44$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(667, base_ring=CyclotomicField(44))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([14,33]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(17,667))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(667\)
Conductor: \(667\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: 44.44.2829456642779506738660199294300931896594438764890376623447387777021003184630861677846958804464951379972781.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{667}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{27}{44}\right)\)
\(\chi_{667}(99,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{1}{44}\right)\)
\(\chi_{667}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{17}{44}\right)\)
\(\chi_{667}(191,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{23}{44}\right)\)
\(\chi_{667}(244,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{37}{44}\right)\)
\(\chi_{667}(249,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{39}{44}\right)\)
\(\chi_{667}(273,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{13}{44}\right)\)
\(\chi_{667}(336,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{15}{44}\right)\)
\(\chi_{667}(360,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{9}{44}\right)\)
\(\chi_{667}(365,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{35}{44}\right)\)
\(\chi_{667}(389,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{667}(447,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{21}{44}\right)\)
\(\chi_{667}(452,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{31}{44}\right)\)
\(\chi_{667}(481,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{3}{44}\right)\)
\(\chi_{667}(534,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{667}(539,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{667}(563,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{41}{44}\right)\)
\(\chi_{667}(592,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{5}{44}\right)\)
\(\chi_{667}(626,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{7}{44}\right)\)
\(\chi_{667}(655,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{19}{44}\right)\)