# Properties

 Modulus $66$ Structure $$C_{10}\times C_{2}$$ Order $20$

Show commands for: Pari/GP / SageMath

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(66)

pari: g = idealstar(,66,2)

## Character group

 sage: G.order()  pari: g.no Order = 20 sage: H.invariants()  pari: g.cyc Structure = $$C_{10}\times C_{2}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{66}(13,\cdot)$, $\chi_{66}(23,\cdot)$

## Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$5$$ $$7$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$35$$
$$\chi_{66}(1,\cdot)$$ 66.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{66}(5,\cdot)$$ 66.g 10 no $$-1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$-1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$
$$\chi_{66}(7,\cdot)$$ 66.f 10 no $$-1$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$
$$\chi_{66}(13,\cdot)$$ 66.f 10 no $$-1$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$
$$\chi_{66}(17,\cdot)$$ 66.h 10 no $$1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$-1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{66}(19,\cdot)$$ 66.f 10 no $$-1$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{66}(23,\cdot)$$ 66.c 2 no $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{66}(25,\cdot)$$ 66.e 5 no $$1$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$
$$\chi_{66}(29,\cdot)$$ 66.h 10 no $$1$$ $$1$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$-1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$
$$\chi_{66}(31,\cdot)$$ 66.e 5 no $$1$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{66}(35,\cdot)$$ 66.h 10 no $$1$$ $$1$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$-1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{66}(37,\cdot)$$ 66.e 5 no $$1$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$
$$\chi_{66}(41,\cdot)$$ 66.h 10 no $$1$$ $$1$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$-1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$
$$\chi_{66}(43,\cdot)$$ 66.d 2 no $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{66}(47,\cdot)$$ 66.g 10 no $$-1$$ $$1$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$-1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{66}(49,\cdot)$$ 66.e 5 no $$1$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{66}(53,\cdot)$$ 66.g 10 no $$-1$$ $$1$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$-1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$
$$\chi_{66}(59,\cdot)$$ 66.g 10 no $$-1$$ $$1$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$-1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$
$$\chi_{66}(61,\cdot)$$ 66.f 10 no $$-1$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$
$$\chi_{66}(65,\cdot)$$ 66.b 2 no $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$1$$