Properties

Conductor 31
Order 30
Real No
Primitive No
Parity Odd
Orbit Label 62.h

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(62)
sage: chi = H[21]
pari: [g,chi] = znchar(Mod(21,62))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 31
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 30
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 62.h
Orbit index = 8

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{62}(3,\cdot)\) \(\chi_{62}(11,\cdot)\) \(\chi_{62}(13,\cdot)\) \(\chi_{62}(17,\cdot)\) \(\chi_{62}(21,\cdot)\) \(\chi_{62}(43,\cdot)\) \(\chi_{62}(53,\cdot)\) \(\chi_{62}(55,\cdot)\)

Inducing primitive character

\(\chi_{31}(21,\cdot)\)

Values on generators

\(3\) → \(e\left(\frac{29}{30}\right)\)

Values

-113579111315171921
\(-1\)\(1\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{30}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{15})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 62 }(21,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{62}(21,\cdot)) = \sum_{r\in \Z/62\Z} \chi_{62}(21,r) e\left(\frac{r}{31}\right) = -5.5355313849+-0.5982409938i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 62 }(21,·),\chi_{ 62 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{62}(21,\cdot),\chi_{62}(1,\cdot)) = \sum_{r\in \Z/62\Z} \chi_{62}(21,r) \chi_{62}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 62 }(21,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{62}(21,·)) = \sum_{r \in \Z/62\Z} \chi_{62}(21,r) e\left(\frac{1 r + 2 r^{-1}}{62}\right) = -3.6934700029+5.0836253357i \)