Properties

Label 6039.28
Modulus $6039$
Conductor $671$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6039, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18,17]))
 
pari: [g,chi] = znchar(Mod(28,6039))
 

Basic properties

Modulus: \(6039\)
Conductor: \(671\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{671}(28,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6039.ff

\(\chi_{6039}(28,\cdot)\) \(\chi_{6039}(1135,\cdot)\) \(\chi_{6039}(2107,\cdot)\) \(\chi_{6039}(2890,\cdot)\) \(\chi_{6039}(3088,\cdot)\) \(\chi_{6039}(3241,\cdot)\) \(\chi_{6039}(3835,\cdot)\) \(\chi_{6039}(5392,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.46380475635825931491085470906709405384203252557607421.1

Values on generators

\((1343,5491,5248)\) → \((1,e\left(\frac{9}{10}\right),e\left(\frac{17}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 6039 }(28, a) \) \(1\)\(1\)\(-i\)\(-1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(i\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(1\)\(e\left(\frac{1}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6039 }(28,a) \;\) at \(\;a = \) e.g. 2