Properties

Label 6025.301
Modulus $6025$
Conductor $241$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(6025)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,11]))
 
pari: [g,chi] = znchar(Mod(301,6025))
 

Basic properties

Modulus: \(6025\)
Conductor: \(241\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{241}(60,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6025.bv

\(\chi_{6025}(301,\cdot)\) \(\chi_{6025}(1201,\cdot)\) \(\chi_{6025}(4101,\cdot)\) \(\chi_{6025}(5001,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((2652,2176)\) → \((1,e\left(\frac{11}{12}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{11}{12}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{12}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.159289617104504228485730641.1