# Properties

 Label 6025.167 Modulus $6025$ Conductor $6025$ Order $240$ Real no Primitive yes Minimal yes Parity even

# Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(6025)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([156,143]))

pari: [g,chi] = znchar(Mod(167,6025))

## Basic properties

 Modulus: $$6025$$ Conductor: $$6025$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$240$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 6025.jc

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(2652,2176)$$ → $$(e\left(\frac{13}{20}\right),e\left(\frac{143}{240}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$ $$1$$ $$1$$ $$e\left(\frac{103}{120}\right)$$ $$e\left(\frac{119}{120}\right)$$ $$e\left(\frac{43}{60}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{203}{240}\right)$$ $$e\left(\frac{23}{40}\right)$$ $$e\left(\frac{59}{60}\right)$$ $$e\left(\frac{71}{240}\right)$$ $$e\left(\frac{17}{24}\right)$$ $$e\left(\frac{17}{48}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $\Q(\zeta_{240})$ Fixed field: Number field defined by a degree 240 polynomial