Properties

Label 6025.151
Modulus $6025$
Conductor $241$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(6025)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,23]))
 
pari: [g,chi] = znchar(Mod(151,6025))
 

Basic properties

Modulus: \(6025\)
Conductor: \(241\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{241}(151,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6025.gx

\(\chi_{6025}(151,\cdot)\) \(\chi_{6025}(626,\cdot)\) \(\chi_{6025}(1301,\cdot)\) \(\chi_{6025}(2051,\cdot)\) \(\chi_{6025}(2251,\cdot)\) \(\chi_{6025}(2276,\cdot)\) \(\chi_{6025}(2401,\cdot)\) \(\chi_{6025}(2901,\cdot)\) \(\chi_{6025}(3026,\cdot)\) \(\chi_{6025}(3051,\cdot)\) \(\chi_{6025}(3251,\cdot)\) \(\chi_{6025}(4001,\cdot)\) \(\chi_{6025}(4676,\cdot)\) \(\chi_{6025}(5151,\cdot)\) \(\chi_{6025}(5626,\cdot)\) \(\chi_{6025}(5701,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((2652,2176)\) → \((1,e\left(\frac{23}{60}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{23}{60}\right)\)\(-1\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{1}{60}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial