# Properties

 Label 6012.451 Modulus $6012$ Conductor $668$ Order $166$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(6012)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([83,0,125]))

pari: [g,chi] = znchar(Mod(451,6012))

## Basic properties

 Modulus: $$6012$$ Conductor: $$668$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$166$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{668}(451,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 6012.x

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(3007,3341,4681)$$ → $$(-1,1,e\left(\frac{125}{166}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{125}{166}\right)$$ $$e\left(\frac{59}{166}\right)$$ $$e\left(\frac{97}{166}\right)$$ $$e\left(\frac{93}{166}\right)$$ $$e\left(\frac{151}{166}\right)$$ $$e\left(\frac{29}{166}\right)$$ $$e\left(\frac{4}{83}\right)$$ $$e\left(\frac{42}{83}\right)$$ $$e\left(\frac{79}{83}\right)$$ $$e\left(\frac{45}{166}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $\Q(\zeta_{83})$ Fixed field: Number field defined by a degree 166 polynomial